Highest vectors of representations (total 14) ; the vectors are over the primal subalgebra. | \(-h_{6}-1/2h_{5}+1/2h_{3}+h_{1}\) | \(g_{33}+g_{32}\) | \(g_{34}+g_{30}\) | \(-g_{14}+g_{13}\) | \(g_{19}+g_{8}\) | \(g_{9}\) | \(g_{10}\) | \(g_{31}\) | \(g_{28}\) | \(g_{26}\) | \(g_{29}\) | \(g_{36}\) | \(g_{35}\) | \(g_{23}\) |
weight | \(0\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{2}\) | \(2\omega_{2}\) | \(2\omega_{3}\) | \(2\omega_{3}\) | \(\omega_{1}+\omega_{2}+\omega_{3}\) | \(\omega_{1}+\omega_{2}+\omega_{3}\) | \(\omega_{1}+\omega_{2}+\omega_{3}\) | \(\omega_{1}+\omega_{2}+\omega_{3}\) | \(2\omega_{1}+2\omega_{2}\) | \(2\omega_{1}+2\omega_{3}\) | \(2\omega_{2}+2\omega_{3}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{2}\) | \(2\omega_{2}\) | \(2\omega_{3}\) | \(2\omega_{3}\) | \(\omega_{1}+\omega_{2}+\omega_{3}-6\psi\) | \(\omega_{1}+\omega_{2}+\omega_{3}-6\psi\) | \(\omega_{1}+\omega_{2}+\omega_{3}+6\psi\) | \(\omega_{1}+\omega_{2}+\omega_{3}+6\psi\) | \(2\omega_{1}+2\omega_{2}\) | \(2\omega_{1}+2\omega_{3}\) | \(2\omega_{2}+2\omega_{3}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0, 0, 0) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0, 0) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2, 0, 0) | \(\displaystyle V_{2\omega_{3}} \) → (0, 0, 2, 0) | \(\displaystyle V_{\omega_{1}+\omega_{2}+\omega_{3}-6\psi} \) → (1, 1, 1, -6) | \(\displaystyle V_{\omega_{1}+\omega_{2}+\omega_{3}+6\psi} \) → (1, 1, 1, 6) | \(\displaystyle V_{2\omega_{1}+2\omega_{2}} \) → (2, 2, 0, 0) | \(\displaystyle V_{2\omega_{1}+2\omega_{3}} \) → (2, 0, 2, 0) | \(\displaystyle V_{2\omega_{2}+2\omega_{3}} \) → (0, 2, 2, 0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | \(W_{12}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
| Semisimple subalgebra component.
|
| Semisimple subalgebra component.
|
| Semisimple subalgebra component.
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(\omega_{1}+\omega_{2}+\omega_{3}\) \(-\omega_{1}+\omega_{2}+\omega_{3}\) \(\omega_{1}-\omega_{2}+\omega_{3}\) \(\omega_{1}+\omega_{2}-\omega_{3}\) \(-\omega_{1}-\omega_{2}+\omega_{3}\) \(-\omega_{1}+\omega_{2}-\omega_{3}\) \(\omega_{1}-\omega_{2}-\omega_{3}\) \(-\omega_{1}-\omega_{2}-\omega_{3}\) | \(\omega_{1}+\omega_{2}+\omega_{3}\) \(-\omega_{1}+\omega_{2}+\omega_{3}\) \(\omega_{1}-\omega_{2}+\omega_{3}\) \(\omega_{1}+\omega_{2}-\omega_{3}\) \(-\omega_{1}-\omega_{2}+\omega_{3}\) \(-\omega_{1}+\omega_{2}-\omega_{3}\) \(\omega_{1}-\omega_{2}-\omega_{3}\) \(-\omega_{1}-\omega_{2}-\omega_{3}\) | \(2\omega_{1}+2\omega_{2}\) \(2\omega_{2}\) \(2\omega_{1}\) \(-2\omega_{1}+2\omega_{2}\) \(0\) \(2\omega_{1}-2\omega_{2}\) \(-2\omega_{1}\) \(-2\omega_{2}\) \(-2\omega_{1}-2\omega_{2}\) | \(2\omega_{1}+2\omega_{3}\) \(2\omega_{3}\) \(2\omega_{1}\) \(-2\omega_{1}+2\omega_{3}\) \(0\) \(2\omega_{1}-2\omega_{3}\) \(-2\omega_{1}\) \(-2\omega_{3}\) \(-2\omega_{1}-2\omega_{3}\) | \(2\omega_{2}+2\omega_{3}\) \(2\omega_{3}\) \(2\omega_{2}\) \(-2\omega_{2}+2\omega_{3}\) \(0\) \(2\omega_{2}-2\omega_{3}\) \(-2\omega_{2}\) \(-2\omega_{3}\) \(-2\omega_{2}-2\omega_{3}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(\omega_{1}+\omega_{2}+\omega_{3}-6\psi\) \(-\omega_{1}+\omega_{2}+\omega_{3}-6\psi\) \(\omega_{1}-\omega_{2}+\omega_{3}-6\psi\) \(\omega_{1}+\omega_{2}-\omega_{3}-6\psi\) \(-\omega_{1}-\omega_{2}+\omega_{3}-6\psi\) \(-\omega_{1}+\omega_{2}-\omega_{3}-6\psi\) \(\omega_{1}-\omega_{2}-\omega_{3}-6\psi\) \(-\omega_{1}-\omega_{2}-\omega_{3}-6\psi\) | \(\omega_{1}+\omega_{2}+\omega_{3}+6\psi\) \(-\omega_{1}+\omega_{2}+\omega_{3}+6\psi\) \(\omega_{1}-\omega_{2}+\omega_{3}+6\psi\) \(\omega_{1}+\omega_{2}-\omega_{3}+6\psi\) \(-\omega_{1}-\omega_{2}+\omega_{3}+6\psi\) \(-\omega_{1}+\omega_{2}-\omega_{3}+6\psi\) \(\omega_{1}-\omega_{2}-\omega_{3}+6\psi\) \(-\omega_{1}-\omega_{2}-\omega_{3}+6\psi\) | \(2\omega_{1}+2\omega_{2}\) \(2\omega_{2}\) \(2\omega_{1}\) \(-2\omega_{1}+2\omega_{2}\) \(0\) \(2\omega_{1}-2\omega_{2}\) \(-2\omega_{1}\) \(-2\omega_{2}\) \(-2\omega_{1}-2\omega_{2}\) | \(2\omega_{1}+2\omega_{3}\) \(2\omega_{3}\) \(2\omega_{1}\) \(-2\omega_{1}+2\omega_{3}\) \(0\) \(2\omega_{1}-2\omega_{3}\) \(-2\omega_{1}\) \(-2\omega_{3}\) \(-2\omega_{1}-2\omega_{3}\) | \(2\omega_{2}+2\omega_{3}\) \(2\omega_{3}\) \(2\omega_{2}\) \(-2\omega_{2}+2\omega_{3}\) \(0\) \(2\omega_{2}-2\omega_{3}\) \(-2\omega_{2}\) \(-2\omega_{3}\) \(-2\omega_{2}-2\omega_{3}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}+\omega_{3}-6\psi}\oplus M_{-\omega_{1}+\omega_{2}+\omega_{3}-6\psi}\oplus M_{\omega_{1}-\omega_{2}+\omega_{3}-6\psi} \oplus M_{\omega_{1}+\omega_{2}-\omega_{3}-6\psi}\oplus M_{-\omega_{1}-\omega_{2}+\omega_{3}-6\psi}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}-6\psi} \oplus M_{\omega_{1}-\omega_{2}-\omega_{3}-6\psi}\oplus M_{-\omega_{1}-\omega_{2}-\omega_{3}-6\psi}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}+\omega_{3}+6\psi}\oplus M_{-\omega_{1}+\omega_{2}+\omega_{3}+6\psi}\oplus M_{\omega_{1}-\omega_{2}+\omega_{3}+6\psi} \oplus M_{\omega_{1}+\omega_{2}-\omega_{3}+6\psi}\oplus M_{-\omega_{1}-\omega_{2}+\omega_{3}+6\psi}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}+6\psi} \oplus M_{\omega_{1}-\omega_{2}-\omega_{3}+6\psi}\oplus M_{-\omega_{1}-\omega_{2}-\omega_{3}+6\psi}\) | \(\displaystyle M_{2\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{2\omega_{1}}\oplus M_{-2\omega_{1}+2\omega_{2}}\oplus M_{0}\oplus M_{2\omega_{1}-2\omega_{2}} \oplus M_{-2\omega_{1}}\oplus M_{-2\omega_{2}}\oplus M_{-2\omega_{1}-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{1}+2\omega_{3}}\oplus M_{2\omega_{3}}\oplus M_{2\omega_{1}}\oplus M_{-2\omega_{1}+2\omega_{3}}\oplus M_{0}\oplus M_{2\omega_{1}-2\omega_{3}} \oplus M_{-2\omega_{1}}\oplus M_{-2\omega_{3}}\oplus M_{-2\omega_{1}-2\omega_{3}}\) | \(\displaystyle M_{2\omega_{2}+2\omega_{3}}\oplus M_{2\omega_{3}}\oplus M_{2\omega_{2}}\oplus M_{-2\omega_{2}+2\omega_{3}}\oplus M_{0}\oplus M_{2\omega_{2}-2\omega_{3}} \oplus M_{-2\omega_{2}}\oplus M_{-2\omega_{3}}\oplus M_{-2\omega_{2}-2\omega_{3}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle 2M_{\omega_{1}+\omega_{2}+\omega_{3}-6\psi}\oplus 2M_{-\omega_{1}+\omega_{2}+\omega_{3}-6\psi}\oplus 2M_{\omega_{1}-\omega_{2}+\omega_{3}-6\psi} \oplus 2M_{\omega_{1}+\omega_{2}-\omega_{3}-6\psi}\oplus 2M_{-\omega_{1}-\omega_{2}+\omega_{3}-6\psi}\oplus 2M_{-\omega_{1}+\omega_{2}-\omega_{3}-6\psi} \oplus 2M_{\omega_{1}-\omega_{2}-\omega_{3}-6\psi}\oplus 2M_{-\omega_{1}-\omega_{2}-\omega_{3}-6\psi}\) | \(\displaystyle 2M_{\omega_{1}+\omega_{2}+\omega_{3}+6\psi}\oplus 2M_{-\omega_{1}+\omega_{2}+\omega_{3}+6\psi}\oplus 2M_{\omega_{1}-\omega_{2}+\omega_{3}+6\psi} \oplus 2M_{\omega_{1}+\omega_{2}-\omega_{3}+6\psi}\oplus 2M_{-\omega_{1}-\omega_{2}+\omega_{3}+6\psi}\oplus 2M_{-\omega_{1}+\omega_{2}-\omega_{3}+6\psi} \oplus 2M_{\omega_{1}-\omega_{2}-\omega_{3}+6\psi}\oplus 2M_{-\omega_{1}-\omega_{2}-\omega_{3}+6\psi}\) | \(\displaystyle M_{2\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{2\omega_{1}}\oplus M_{-2\omega_{1}+2\omega_{2}}\oplus M_{0}\oplus M_{2\omega_{1}-2\omega_{2}} \oplus M_{-2\omega_{1}}\oplus M_{-2\omega_{2}}\oplus M_{-2\omega_{1}-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{1}+2\omega_{3}}\oplus M_{2\omega_{3}}\oplus M_{2\omega_{1}}\oplus M_{-2\omega_{1}+2\omega_{3}}\oplus M_{0}\oplus M_{2\omega_{1}-2\omega_{3}} \oplus M_{-2\omega_{1}}\oplus M_{-2\omega_{3}}\oplus M_{-2\omega_{1}-2\omega_{3}}\) | \(\displaystyle M_{2\omega_{2}+2\omega_{3}}\oplus M_{2\omega_{3}}\oplus M_{2\omega_{2}}\oplus M_{-2\omega_{2}+2\omega_{3}}\oplus M_{0}\oplus M_{2\omega_{2}-2\omega_{3}} \oplus M_{-2\omega_{2}}\oplus M_{-2\omega_{3}}\oplus M_{-2\omega_{2}-2\omega_{3}}\) |